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Introduction 

Real-time traffic state estimation and prediction are of importance to the traffic management systems. 

New opportunities are enabled by the emerging sensing and automation technologies to manage 

connected and automated traffic in terms of controlling trajectories of automated vehicles. Connected 

automated vehicles (CAV) are, by nature, moving probe sensors in the traffic systems, because they are 

in the traffic stream and interact with other non-detectable vehicles constantly. Making use of the rich 

dataset from these vehicle sensors can enhance our capability in observing the entire traffic stream.  

In this paper, we propose a framework, referred to as dynamic traffic environment mapping (DTEM), for 

the estimation and prediction of detailed states (i.e., speed, location) of vehicles in a traffic stream on a 

selected roadway segment. Our DTEM framework is based on a particle filtering process, which has 

provided a considerable amount of solutions in the area of vehicle tracking and location estimation. It is 

flexible to deal with cases where the dynamic and observation systems are non-linear and/or non-

Gaussian. The particle filtering algorithm is an importance sampling technique that estimates the 

distribution of target by sampling from a series of proposal particles (Arulampalam, et al., 2002), and can 

by nature consider intrinsic uncertainties (e.g., sensor data errors, process model uncertainties) in the 

estimation process (Sasiadek, 1999; Li, 2013).  

 

Methodology 

The framework of the proposed particle filtering approaches and approximates the system and population 

through Monte Carlo sampling. One key assumption of the work is that CAV behavior is affected and can 

partially reflect the existence and behavior of the multiple front non-detectable vehicles and interactions 

due to the car following process. Except for the CAVs, we define two types of vehicles in the traffic 

stream. Observed vehicles (OVs) are vehicles in the sensor range of CAVs and their location and speeds 

can be detected. Inserted vehicles (IVs) are vehicles that cannot be sensed and are completely non-

observable. We define a particle as an insertion between two CAVs that includes the OV and the IVs. 

The first step of the framework is to insert vehicles and guess the number of insertions through certain 

rules. Then we will sample the particles with safety constraints. Note that each particle will contain all 

non-detectable vehicles in the traffic stream between detectable vehicles, such that we are able to account 

for the interdependency of vehicle positions and speed through the step-by-step process models (i.e., car-

following models) of each vehicle. Then we use the IDM to update the states of the particels to next 

timestamp. Next, we use data of predicted particles and observed OVs to calculate the probability of how 



close the predicted particle is to the observation. Then we assign the weight of each sampled particle 

based on the probabilities. To get the particles with higher weights, we use the Resampling Wheel 

Algorithm to accomplish this task. A new set of particels are selected and we normalize the weights of the 

new set of particles. Considering that the sum of the weights is 1, the unknown particle state can be 

estimated as the sum of all samples times their weights respectively. The resampling process is 

implemented by sampling from the new sets obtained based on the Resampling Wheel Algorithm. Then 

we repeat the process as shown in Fig. 1.  

The prediction process is similar to the estimation process except that it uses the predicted states of CAV 

and OVs to calculate the weights. Historical estimated speeds are used as input data for predictions and 

time series models are built to predict the future speed of each vehicle in the system. To calculate the best 

prediction, we adopt a similar process as stated in the estimation. 

 
Fig. 1. DTEM estimation flowchart 

 

 



Results 

The freeway and arterial dataset from the Next Generation Simulation (NGSIM) program is applied to 

test the proposed methodological framework. Seven key factors potentially affecting the performance of 

the estimation and prediction are included in the sensitivity analysis: CAV penetration rate, traffic 

congestion, sensor noise level, estimation/prediction time interval, incoming traffic, CAV sensing/data-

sharing capability and process model validity (i.e.,  calibration of IDM).  

A comprehensive comparison for all the scenarios in terms of locations and speeds estimation effective 

penetration rate as well as the estimation of the number of vehicles is listed in Table 1. Example results of 

5-second prediction are shown in Table 2. 

Table 1 Location/speed estimation effective penetration rates and accuracy for No. vehicles (one OV 

observed)   

Scenario CAV Rate 

12.5% 25% 50% 

With 

incomin

g traffic 

Congested Traffic (Location|Speed|No. vehicles) 

Sensor noise (m) 0.5 54% | 75% | 88% 70% |85% | 90% 87% |95% | 93% 

1 50% | 69% | 87% 66% |78% | 89% 85% |90% | 93% 

2 47% | 64% | 81% 61% |74% | 86% 78% |86% | 90% 

Uncongested Traffic (Location|Speed|No. vehicles) 

Sensor noise (m) 0.5 64% | 83% | 90% 77% | 89% | 91% 85% | 96% | 95% 

1 57% | 76% | 87% 70% | 85% | 91% 80% | 92% | 91% 

2 55% | 69% | 83% 61% | 79% | 88% 73% | 86% | 90% 

Without 

incomin

g traffic 

 

Congested Traffic (Location|Speed|No. vehicles) 

Sensor noise (m) 0.5 66% | 83% | 93% 80% | 90% | 97% 88% | 96% | 100% 

1 62% | 80% | 91% 75% | 87% | 95% 85% | 96% | 100% 

2 51% | 70% | 88% 65% | 86% | 91% 80% | 90% | 99% 

Uncongested Traffic (Location|Speed|No. vehicles) 

Sensor noise (m) 0.5 75% | 86% | 96% 86% | 95% | 99% 95% | 100%| 100% 

1 67% | 82% | 93% 78% | 89% | 97% 92% | 98% | 100% 

  2 66% | 81% | 90% 77% | 85% | 96% 90% | 94% | 99% 

 

Table 2 5-second location prediction effective penetration rates (One OV observed) 

Scenario CAV Rate 

12.5% 25% 50% 

With 

incoming 

traffic 

Congested Traffic 

Sensor noise (m) 0.5 47% 61% 76% 

1 41% 56% 74% 

2 38% 52% 69% 

Uncongested Traffic 

Sensor noise (m) 0.5 51% 62% 78% 

1 47% 59% 72% 

2 40% 54% 67% 

Without 

incoming 

traffic 

 

Congested Traffic 

Sensor noise (m) 0.5 62%  71%  82%  

1 57%  68% 80%  

2 52%  62%  75%  

Uncongested Traffic 



Sensor noise (m) 0.5 73%  80%  90% 

1 69%  76%  87% 

  2 60%  67%  83%  

 

When the CAV penetration rate is as high as 50%, our framework shows the performance of effective 

penetration rates between 82% and 100%. When the CAV penetration rate is 25%, the accuracy of location 
estimation is between 65% and 77% when only 1 OV observed. The accuracy of 5-second location 

prediction is between 60% and 80% for traffic with a fixed number of vehicles. There is a significant 

improvement in the performance of about 10% on average when the CAV rate increases from 25% to 50%. 
Our sensitivity analysis also shows that lower sensor noise will make the estimation and prediction more 

accurate, and incoming traffic will lead to fluctuation as new vehicles joining the traffic. The results also 

suggest that the performance gradually improves after 10 – 15 steps (5-8 sec), and the performance becomes 
stable after about 20 steps (10 sec). We tested the algorithm with arterial traffic and the effective penetration 

rate is between 80% and 90%. We also provide queue length estimation with an averaged absolute error 

rate of less than 10% when the CAV penetration rate is low, such as 12.5% and 25%, indicating accurate 

queue length estimation in most cases. 
 

 

Conclusion 

We develop a DTEM framework that can efficiently and accurately estimate and predict the real-time 

state of a partially observed traffic system. The developed approach is general and applicable to both 

freeway and arterial traffic with different congestion conditions. The framework explicitly accounts for 

the uncertainties that intrinsically exist in the dynamic traffic system. The DTEM framework serves as a 

foundational input for future cooperative automation programs by providing as inputs the dynamic traffic 

environment conditions for control of CAV trajectories and infrastructure. 

Our testing results show that DTEM can accurately estimate and predict vehicle location and speed even 

at low market penetrations. Generally, our framework provides a method to efficiently and accurately 

estimate the real-time HD traffic state and make a short-term prediction of a partially observed traffic 

system.  
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